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A natural embedding Am-i �9 An-l C Am~-I for the corresponding quantum 
algebras is constructed through the appropriate comultiplication on the generators 
of each of the Am-l and A,-I algebras. The above embedding is proved in the 
q-boson realization by means of the isomorphism between the Mq(mn)-- | 
.~q(m)~ @m Mq(n) algebras. 

Recently, great interest has been given to the study of quantum algebras 
and their applications to physical problems. Essentially quantum algebras are 
Hopf algebras. A Hopf algebra is an algebra with additional structures; (i) 
besides the multiplication m: A | A ---> A, there is a comultiplication A: A 
---> A | A; (ii) besides the unit 1 which provides the embedding R --~ A ( C  

--> A), where R(C) is the real (complex) field, there is a counit e: A --> R(C). 
All these mappings are homomorphisms and there is an antihomomorphism 
S: A --> A called an antipode. Such algebras were developed much earlier 
(Sweedler, 1969; Abe, 1980) from a mathematical point of view. The contem- 
porary development of their theory is connected with noncommutative geome- 
try and differential calculus (Woronowicz, 1989). In physics these new 
mathematical objects appear in the theory of the inverse scattering problem 
(Faddeev et al., 1988). Quantum algebras have been applied to a number of 
areas of physical interest, such as statistical mechanics, quantum field theory, 
and molecular, atomic, and nuclear physics. 

In nuclear structure theory successful applications of models based on 
algebraic chains of Lie algebras [interaction boson model (IBM) (Iachello 
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and Arima, 1987), two-vector boson model (TVBM) (Georgieva e t  al . ,  1982), 
etc.] have been obtained. 

It will be of interest to construct q-analogs of these chains and consider 
models based on them. The chain SUq(3) ~)  Uq(2) C Uq(6) was already consid- 
ered by Quesne (1991). 

In this paper we consider the general case of the embedding 

A~_, G A~_, C Aqn_l (l) 

in the q-boson realization. The proper definition of the embedding (I) results 
from a careful analysis of the comultiplication structure. The present paper 
also provides the method of its realization, briefly described below. 

As is well known, for any integer n the algebra A~-I has a realization 
of its generators in terms of the q-boson algebra ~/~-(n) (Sun and Fu, 1989; 
Hayashi, 1990). In order to obtain the realization of the generators of A~-I in 
terms of the q-boson algebra ~q(mn), we apply the comultiplication m - 1 
times, then a q-boson realization for each term in the tensor product, and 
finally employ the isomorphism ~lq(mn) ~ | ~(n).  By analogy we realize 
the generators of A q_ i. The generators of the q-deformed algebra A~n- i have 
their realization by means of the same algebra .~(mn). 

We start with the algebraic relations among the regular functionals l~j 
of the quantum matrix group given in Faddeev et al. (1989): 

+ + - -  

Rij, mdmd;,t - + + : ljp lira Rmp ,el 
m,p m,p 

Rij,mplmklpl ~ t+-l + - o +  tjptim ,~,mp,k I (2) 
m,p m,p 

In the case of deformed Aq_ 1 algebras the explicit form of the R+-matrix 
is given by 

R+ : el/n( q ~ eii~ i4~j=l ~ eii~ejj-~ ( q -  q-l)i<j=l ~ e i j~ej i}  (3) 

where e 0 are  n X n matrices with elements (e0)tm = 8ik~jm. 
By substituting (3) in (2) we obtain the following relations for 19: 

[l!,~, l}~ )] = (1 - ,~Cl~'~l ~) + (q  --  l~:)l!~:) --  n- '~(l( ') l(~) ~m-,s f  ,~m~,sj - l (')l(')~ 

"xt" -. ,j- 
i=j m=s m>s j>i 

[li +, lj~] -- (1 q)  +(limljs -ljfiim) + (q -1 - +  q )(1)mli~ + -  . . . .  l)ml~) (4) 
< , /  

i=j m=s m>s 

~ I  ly  + _ _ + + : 1; lii lii lii lii : 1 = 
i=l 

l~ = 0 f o r i > j  and l,~ = 0 f o r i < j  
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The last relations employs not only the form of R § but also 
additional conditions (Faddeev et al., 1989). 

Further, by means of the substitution 

some 

u,j  = g ,  - E (5) 

+ _ _ + _ q~-l/2 
l i j  = -T-q~-l/2(q - q - 1 ) y ~ q ~ - ( H i + u j ) / 2  w i t h  Yff = + q _ q - 1  (6 )  

one comes to the relations in Table I for the Cartan-Weyl basis of the q- 
deformed Aq-i algebra. 

It should be noted here that the generators Y~ can be substituted by 
IT"~3~j(q, f/), which will lead to modifications in the relations in Table I 
depending on the functions j~j (q,/7/). An example of such a mapping from 
su(2) to a deformed S U q ( 2 )  is given in Currtright et al. (1991). 

From the definition of the comultiplication A(I~) = ZT~=l I~ | l~j and 
the counit e(l~ ) = ~ i j  given in Faddeev et al. (1988) we obtain the following 
coalgebraic structure: 

Table I? 

[Hq, H,,.] = 0 
Borel subalgebra: !~ + Borel subalgebra: ~ -  

[y~ ,  + = + Ykj]q YO, i < k < j 
[ Y ~ ,  Y~j ]q = O, i < j < k 
[y~j, + = Yij ]q O, i < k < j 
[Y~j, Y ~ ]  = O. i < j < k < m 
[Y~, Y~,.] = O, i < k < m < j 
[Y'~m, Y +  ] = ( q  - -1  i + q )YkjYim, 

i < k < j < m  
[Hik, Y~] = (ei - ek, ej - e , )Y  + 

[Yq, Yfk]q - I  = Y~k, i > j > k 
[Y[j, Y~]q-i  = 0, i > k > j  
[Y~,  Y~]q-t = O, i > j > k 
[Y~ ,  Y[m] = O, i > j > k > m 
[Y,~,Y/m] = 0, i > k > m > j  
[Y o ,  Yfm] = (q - q - t ) y [ j y ~ ,  

i > k > j > r n  
[Hik, Y~] = (ei - ek, ej - es)Y~ 

Mixed commutators 
[Y~j, YjT] = [Hij]q, i < j 

[Ykr.,, Y~j] = (q - q - , ) y ~ j y ~ q . , k ,  
j > k > i > m  

[Y~ ,  Y~]  = O , j  > i > m 
[y~ ,  y~]  = _y~qL,~k,j  > k > i 
[Y~ ,  Yf,.] = YT~q ~o, j > i > m 
[Y~ ,  Y[z] = 0 

-- 1 -- + Him [Y~, Y ~ ]  = (q - q )Y~jYimq , 
k > j > m > i  

[ Y + , Y ~ ]  = O , k > j > i  

[Y~j, Y]-m] = qHj~y+, j > m > i 

j k > j  > i >  m ; k >  m > j >  i 
> k > m > i ; j > i > k > m  

aWhere (ei, ej) = ~ i j ,  the q-commutator is given by [A, B]q = AB - qBA, and the q-number 
is defined by [X]q = ( ~  - q-X)/(q _ q - i ) .  These relations are analogous to the ones obtained 
by Burroughs (1990). 
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AHij = Hij Q 1 q- 1 | Hij; 
+ q~l/2 

e(Yo  ) = ~ - -  q _ q-1 ,Sij 

e(Hi j )  = o;  S(Hij) = -~ i j  

A Y ~  = "~(q - q-,)q+--l/2 ~ r~q+-(1/2)njk | y~jq• (7) 
i<--k<--j or (j<k<i) 

Applying the standard definition of the antipode S [m o (/d | S) o A = 
m o (S | id)  o A = i o e], we deduce for the antipode of the generators 
Y~ the following recurrent formula: 

S(Y~)  = _ q ~ l y ~  • (q _ q- l )q+l  ~ Y~kS(Y~j) (8) 
i<k<j or (i>k>j) 

Let us introduce the q-boson algebra ~q(n)  with creation and annihila- 
tion operators a f and their q-boson numbers Ni as in Sun and Fu 0989), 
Hayashi (1990), Biedenham (1989), and Macfarlane (1989): 

- -  + . %  + 

ai-a + _ q+la+a; = q• and [N i, a 7] = _ ~ i j a f  (9) 

The q-boson realization of the Cartan-Chevalley generators Hi = Hi,i+l, 
y +  + = Yi,i+ l, and Yi- = Yi-+ 1,i of the Aq_ 1 algebra given by Sun and Fu (1989) is 

Hi = Ni - Ni+l; Y+ = a~-ai-+l; Y[- = ai++ lai- (10) 

The irreducible Fock representation Ftq ml with the vacuum state 10), 
b~- I 0) = 0, Nil 0) = 0 is defined by the set of vectors 

i = l  ([mi]!)  112 [ O ) t m  ~-~ i = l  mi 

with the following properties: 

dim F~q ml - (n + m - 1)! 

Nlm)-- m]m) where N = ~ N i (12) 
i = l  

Using the definitions of  Hi in (10) and N in (12), we express the operators 
Ni by 

s - 1  i - I  

Ni = 1 N + 1_ E t-Ij - E Hj (13) 
n /'/ s=2  j = l  j = l  

The additional generators which extend (10) to the basis of Table I of 

+ _ q-V-l/a 
Y / 7 = + q _  q - l ,  Yi+k = O, i > k; Y ~ = 0 ,  i < k 
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Cartan-Weyl can be obtained from the Chevalley generators (10) by means 
of the first relations in the Borel subalgebras ~+- in Table I. In this way, as 
in Quesne (1992), we obtain the following general realization: 

H i j  = N i - N j ;  Y~ = a + a j q  +-~i<k<j~ Nk ( 1 4 )  

Let us denote the generators of A~lk2-1 by YT and Ni, of Ag~-i by X~ 
and N~, of A~2_ 1 by Z -z--' and N ~, and the nth product of the comultiplication by 

A, = (id | id | . . .  | A~id | id |  | A)/ . . .  (id | A)A 
" v ' ~  - - ' V ' - -  

n n--1 

Since A is a homomorphism, one can consider the following mapping: 

A(n - 1) 

Aq-i > Aq-1 | "-" | Aq_l (15) 
"-. M 

V" 
n 

For the sake of simplicity, the tensor product | will be dropped and 
the index s (or t~) will indicate the number of the tensor space. Thus we obtain 

k2 k2 

s= l  s= l  
kl kl 

/-)~ = ~ H~; 2 +-~= A(kt-1)(Z +-~) = ~ z~7-+~q�89176 (16) 
I.z=l ~=1 

From the construction of the operators (16) and as a result of the used 
homomorphism A it is easy to prove that the generators X~, /-)~ and 2 -+s, 
/4~ satisfy the commutations relations for the algebras Ag~_~ and A~2_~. 

Using the q-boson realization of the generators (14), we obtain 

~ - s  

kz 
i k sign(~-s)(N~--N~+ 1) E ~+s~--s _'~]~ 2 , 

~1 ~ t~p~+ 1 q aCs,a= ~ 
s= l  

kZ 
' k sign(cr-s)(N~-N~+l) 

S=I 

kl 
k sign0y _ p~)(NS_NScr+ l) E + s ~ - s +  1 ~  ]s 1 _, 

p~=l 

kl 
E +s+la_ s �89162 tr_lsign(cr-~)(Ns-Ns+l) ar ~ q r - 
p.=l 

kl k2 

/.~s ~__ E )~/~ - -  .,p,jVs+l ", /-)r = ~ N~ - N ~ +  1 ( 1 7 )  
iz=l s = l  
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It is correct to consider the q-bosons in 3f and Z in (17) as different 
objects, because in X, a~ s means 

s 

a~ ~ = ~ d  |  | id | at@~ | id  |  | idj 
"V" 
k2 

while in 

Jk_ 

|  | |  | 

kl 

However, in both cases, they satisfy the same relations: 

a~- ] = 0 for all s, t, IX, v 
+ ,  

[a~ ~, a~ -t] = 0 for all s :~ t; ix :~ v 

a~-] = +~ ~ f/_+t 

a-~a+~ ~-1 +s -~ = q+_N~ (18) _~ - q a~ a~ 

Let us define the correspondence i "~, (Ix, s) (kz <- kl): 

i ~ (ix, s) i =  1 . . . . .  klk2; Ix = 1 . . . . .  k~; s =  1 . . . . .  k2 

�9 i - 1  
ix = 1 + lnt[--k-~---2 ] ,  where ant[x] is integer part of x (19) 

s = 1 + (i - 1) rood(k2), i = (IX - 1)k2 + s 

From the introduction of (19) in equations (9) and (18) it follows that 
the algebras | ~q(k l )  and | ~q(k2) constructed by the q-bosons a~ are 
isomorphic to the algebra ~/q(klk:) constructed by the q-bosons a, --+. As a 
result the algebras Aql_ 1 and Aq2_ 1 have realizations in the ~q(kl  k2) algebra. 

Propos i t ion  1. The generators X~, / t~  commute with the generators Z-+~, 
/ ~  given by (17). 

P r o o f  Let us consider the commutator between the elements 3(~ and 
Z-~. For this purpose we define Qt,~ and It,~(ix, s, k) as 

Qt, v = q~ (~'.~'=t sign(~-t)(N~-N~ + l)+~k~v,p= 1 sign(p-v)(N~-N~ + 1)) 

]t,v(ix, S, k, q)  : q �89 ~k ~t,cr=l sign(o'--t)(~,v--~,+l,v)(~cr,s+l-~ty,s) 

Using (17) and (18), we obtain for the commutator 
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k2,kl 
~ +  

[ x ~ , ~ - ' ] =  ~ ~ +'' + ' + ~ " ' "  k2, q) ta~ a~+lav av,r, vtw, s, 
t = L v = [  

- av+S+l~+t~t-v~ ~§ IX, kl, q-1)}Qt, v (20) 

The sum over  t and v can be represented as a sum of  five terms: 

(a) = {v=~ IX, IX+ 1 a n d t = ~ s , s +  1} 

( b ) =  { v =  ~ a n d t = s +  1} 

(c) = {v = ix + 1 a n d t = s }  

(d) = {v = ~ a n d t  = s} 

( e ) =  { v = l x +  l a n d t = s +  1} 

In these cases we have: 

I 1 in (a) 
= in (b), (d) It,v(ix, s, k2, q) [q~21/2 

in (c), (e) 

I 1 in (a) 

I ~ " ( s ' i x ' k l ' q - ' ) = [  q~21/2 inin (b), ( e ) ( c ) ,  (d) 

+s+l ~ +t and t In the cases (a) - (c)  the bosons a~ , a~, a~ ,  a~+t commute  and 
the relevant  terms are equal to zero. Thus  the commutator  is given only by 
the sum of  (d) and (e), i.e., 

~ + a - l l 2 a + s + l a s  [~-N~+4-11 ,,'~ - N  s 
[Xp~, Z - s ]  : -1 ~ p~+l~r ~s+l,l.~+ 1 - q ~Q~,~) = 0 

The expression sign(p - I~) = sign(p - IX - 1) when p < IX or p > 
I J- + 1 is used essentially in the calculation o f  

q - N~++ ll Q s + l , ~ + l = q - N~ Q s,i L 

The other commutators  can be proved in the same way. 
Further using (14) and the isomorphism (19), we have 

a l +(i- 1)rood(k2) 171 + (j-- l)mod(k2) 
1 +int [ [( i-  1 )/k2] ]-- 1 + int { [ ( j -  1 )/k2] ] 

= a~-a7 ~_ y~jq+-~i<~<jor(i>~r>j)N~r (21) 

Finally, applying (13) and (21), we express the generators of  A ~ - I  and 
Aq2_ l in (17) through the generators o f  Aqk2_ t in the following way: 
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/ ~  = 

2;= 

kl 
. . +  i ]~kl sign(or- p.)H(cr- l)k2+s 
l ' ~ - l ) k 2 + s q  2 e~:~ p.,(r = l 

D = I  

kl 

H(p.-1)k2 + s 
b~=l 

(~-- 1)k2+k2 

Hs,s+k2 
s = ( l x -  1)k2+ 1 

(~+  1)k2 + t (tz~)k2 sign(v_t)HV-kz,v+At+ 
Yt_k~tqz  vet, v=gk2+l 

t=~k2+ l  

(1*+ l)k2 ~ (l~+~)k2 sign(v--t) Hv-kz'u+At- 
s Y ~ - k 2 q  ~ u * t , v = ~ 2 +  1 

t=p, k2+ l 

§ k 2 - 1 (  klk2 ) t-1 
A F -  ~:~2 N +  ~ HI,(~ +-= s HI,,~ (22) 

cr=2 cr=t-k2+ 1 

The difference At between the expressions for 2 +* and X~ is due to 
the ordering of indices in (19), which leads to the appearance of different terms 

q-7" ~i<k<j or (j<k<i) Nk 

in the q-boson realization (14) of the Chevalley and the additional Weyl 
generators. In the expression for A~ the operator N in the q-boson realization 
has the meaning of a total number of bosons operator. In general a correspond- 
ing operator may be constructed in some extension of the algebra Aqlk z_l. 
This can be proved by induction. For Aq [SUq(2)] the operator N can be 
obtained from the second-order Casimir operator: 

qN+l .~_ q-N-1 _ q _ q-1 
cq  = X - X  + + [HI2]q[HI2 + 1]q = (q _ q-l)2 

For n > 2, N (n), the corresponding operator N for Aq-b is obtained from 
the recurrence 

N(n) n + 1 {N(n-l) + 1 n+l t-1 ~ } 
- - -  s s H p -  Hp (23) 

n n --}- 1 t=2 p=l p=l 

Moreover, in practice it is only the eigenvalues of qN which are required. 

Proposition 2. The elements ) ~ ,  / ~  of A~I_ 1 and 2es, /_}s of A~2-1 
defined by (22) belong to the algebra AI~k2-1 and provide an explicit 
embedding Aq~_ 1 G Aq2_ 1 C Aq~k2_ 1 in the q-boson realization (14) of 
Aqlk2-P 
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Proof  From the above it follows that the elements defined by (22) 
belong to the q-deformed Aqlk z_ ~ algebra. Applying the q-boson realization 
(14) and the correspondence (19) and (18), we obtain the q-boson realization 
(17) of the generators X~, He and 2+~, A~, whose commutation relations 
close the algebras Aq~_~ and Aq2_ a. Finally, these two pairs of generators 
commute between themselves as proved in Proposition 1, and so they close 
the algebra A~,,_ 1 �9 A~2_ 1 embedded in  Aqlk2_ 1. �9 

The results of Quesne (1991) are reproduced in the case klk2 = 6, 
kl = 3, a n d k 2 =  2. 

In the limit q --+ 1 we obtain the usual embedding: 

(b t - l )k2+k 2 

s=(p~- l)k2+l 
k2 

�9 a Z + = Y{~- 1)k2+s,lxk2+s 
s = l  
k2 

s = l  
kl 

ffl s : ~ H(~-l)k2+s 
i~=1 

kl 

s 
~,=1 

These results are obtained on the basis of the isomorphism between the 
algebras S~q(mn)-- | S~q(rn)-- | S~-(n) and the homomorphism of the 
comultiplication. 
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